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An example is presented of a separated flow in an unbounded domain in which, as 
the Reynolds number becomes large, the separated region remains of size 0(1)  and 
tends to a non-trivial Prandtl-Batchelor flow. The multigrid method is used to 
obtain rapid convergence to the solution of the discretized NavierStokes equations 
at  Reynolds numbers of up to 5000. Extremely fine grids and tests of an integral 
property of the flow ensure accuracy. The flow exhibits the separation of a boundary 
layer with ensuing formation of a downqtream eddy and reattachment of a free shear 
layer. The asymptotic ('triple deck') theory of laminar separation from a leading 
edge, due to Sychev (1979), is clarified and compared to the numerical solutions. 
Much better qualitative agreement is' obtained than has been reported previously. 
Together with a plausible choice of two free parameters, the data can be extrapolated 
to infinite Reynolds number, giving quantitative agreement with triple-deck theory 
with errors of 20?4 or less. The development,of a region of constant vorticity is 
observed in the downstream eddy, and the global infinite-Reynolds-number limit is 
a Prandtl-Batchelor flow ; however, when the plate is stationary, the occurrence of 
secondary separation suggests that the limiting flow contains an infinite sequence of 
eddies behind the separation point. Secondary separation can be averted by driving 
the plate, and in this case the limit is a single-vortex Prandtl-Batchelor flow of the 
type found by Moore, Saffman & Tanveer (1988) ; detailed, encouraging comparisons 
are made to the vortex-sheet strength and position. Altering the boundary condition 
on the plate gives viscous eddies that approximate different members of the family 
of inviscid solutions. 

1. Introduction 
This paper is concerned with the steady laminar flow of an incompressible fluid 

with small viscosity. We study, in detail, a test problem that exhibits many features 
of interest, such as the transition from viscous to inviscid dynamics and the 
separation of a boundary layer. 

The infinite-Reynolds-number limit 'of a viscous flow is expected to be at  least a 
weak solution of the Euler equations for the motion of an incompressible, inviscid 
fluid. The problem is that in most geometries there are many such solutions. Here we 
concentrate on the type of solution, mentioned.by Prandtl (1905) and discussed by 
Batchelor (1956), in which closed-streamline regions have constant vorticity and are 
separated from each other (and from any external, irrotational flow) by walls or 
vortex sheets. The driven cavity (see e.g. Schreiber & Keller 1983) presumably tends 
to such a flow, inasmuch as all its streamlines are closed, and in fact high-Reynolds- 
number calculations show that the vorticity does become roughly constant in the 
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main vortex. However, no Batchelor flows have been calculated in a square (perhaps 
because of the profusion of walls and vortex sheets!), so detailed comparisons cannot 
be made. Another candidate for a Batchelor flow as a limit was found by Milos, 
Acrivos & Kim (1987). In their geometry, straight channels in a periodic array join 
over a vertical step. For certain values of the ratio of channel widths before and after 
the step, it appeared that the downstream eddy eventually stopped growing as the 
Reynolds number increased. Once again, no inviscid calculation has been performed, 
although it would be easier to do in this case. 

In this regard, D. W. Moore suggested that we study the corner flow sketched in 
figure 1. The uniform straining field $ = -xy is an exact solution of the 
Navier-Stokes equations; however, when a flat plate is introduced at y = 0, - 1 < 
x < 1, the flow separates shortly after hitting the plate and a counter-rotating eddy 
forms in the corner. Inviscid calculations have been done in this geometry by Moore, 
Saffman & Tanveer (1988), who found a whole family of Prandtl-Batchelor flows, 
parameterized by the eddy vorticity w. This geometry avoids many of the 
complications of the above examples. Although it would not be easy to realize 
experimentally, it is tailor-made to provide numerical results about several flow 
features, including the separation of a boundary layer (an area in which it might be 
said that theory outstrips supporting calculations) and the reattachment of a shear 
layer. It is one of the simplest open flow geometries which could plausibly tend to a 
Prandtl-Batchelor flow as the Reynolds number tends to infinity. 

In calculating solutions to the steady-state Navier-Stokes equations, many 
traditional numerical methods break down when the solution to the full, time- 
dependent equations is unstable. In addition, the numerical grid must be very fine 
in order to resolve the thin boundary and shear layers that develop, and to avoid 
erroneous ‘wiggle’ modes in the solution of the discretized equations. Recently it 
has become possible to use Newton’s method directly on the system of discretized 
equations. Three successful applications of this approach are the work of Fornberg 
(1980, 1985, flow past a cylinder up to Re = 600), Schreiber & Keller (1983, driven 
cavity flow up to Re = lOOOO),  and Milos et al. (1987, cascade expansion flows up to 
Re = 1000). 

On a n N x  N computational grid, the memory requirement for Gaussian elimination 
with diagonal ordering is 4N3, and the computational work is O(N4), which quickly 
exhausts any computer. We decided to investigate the use of multigrid, in which the 
memory and work requirements are both O ( N 2 ) ,  to  solve the discrete equations. We 
have developed a general multigrid code to solve systems of elliptic equations of the 
form 

(1.1) 
with discretized boundary conditions 

uo = g(x, u,) (1.2) 

-VZu+flx, u, VU) = 0 

in two space dimensions when the Reynolds number is large. (Here uo is a vector of 
unknowns at a boundary point and u1 the unknowns at an immediately interior 
point.) 

We restrict ourselves to discussing the accuracy of our final solutions ; full details 
of our experiences developing the multigrid code and investigating various proposed 
relaxation schemes have been reported elsewhere (McLachlan 1990). In  brief, we were 
able to use simple point Gauss-Seidel relaxations with a multi-level defect-correction 
scheme (basically Brandt ’s ‘ double-discretisation ’ method ; Brandt 1984) and 
interpolations tailored to the boundary conditions, and still obtain satisfactory 
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convergence factors (or error reduction per iteration) of 0.34.4.  The discrete 
equations are linearized a t  a grid point, and up-wind differencing suppresses quasi- 
temporal instabilities ; second-order accuracy and artificial-viscosity-free solutions 
are then restored by defect correction. The small memory requirement (4N2 
locations) enables very fine grids to be, used, and the fast relaxations mean that 
solutions can be obtained in about eight minutes on a workstation (we used a DEC 
3100 throughout). 

However, we did eventually experience convergence problems, and could not 
obtain a solution at a Reynolds number of 6000. Although multigrid methods are 
extremely promising, they are not yet fully understood in all situations. 

The corner flow sketched in figure 1 was first studied by Leal (1973), who obtained 
solutions up to a Reynolds number of 400, based on a reference velocity of 1 and the 
plate semilength, 1, at which point the eddy still appeared to be fully viscous. In  $2, 
we extend the calculations to a Reynolds number of 5000, and by then the transition 
to a largely inviscid eddy is clear. Extensive checks of convergence and accuracy are 
made, including a test of the integral property of the steady-state NavierStokes 
equations that the total flux of vorticity through a closed streamline is zero. Most 
flow quantities are accurate to within a few tenths of a percent or less. The 
development of the flow is described in $3. 

In $4 we turn our attention to the primary separation of the flow. The currently 
accepted explanation of this phenomenon is given by triple-deck theory, first 
developed using the method of matched asymptotic expansions by Sychev (1972) for 
separation from bluff bodies, and later extended to the case of separation from a 
leading edge, as here (Sychev 1979). The flow structure is essentially the same in both 
cases, except that the expansion proceeds in powers of Re-; in the latter case, rather 
than Re-&. This makes the proposed effects easier to see. The Sychev model holds 
that separation is governed by a free interaction.between the boundary layer and the 
external flow, with the large pressure gradient acting over a small distance being just 
that required to prevent a singularity. More specifically, the external flow is assumed 
to be locally a Prandtl-Batchelor flow, which has a singularity in the pressure 
gradient at separation ; the form of that singularity is then used to derive the scale 
of the small interaction region. One is left with the standard boundary-layer equation 
with unusual boundary conditions (the ‘lower-deck problem ’), which was first solved 
by Smith (1977). 

Previous comparisons to triple-deck theory have been either misleading, as in the 
interaction at the trailing edge of a flat plate (McLachlan 1990, 1991), or have at  
best indicated that separation is plausibly a local phenomenon (Smith 1977, 1979, 
1981). In addition, it is not clear that the appropriate limiting inviscid flow (which 
supplies two parameters in scaling from the outer variables to the triple deck) has 
been considered. One notably successful test of modern asymptotics is the work of 
Dennis & Smith (1980), who considered separation in a tube upstream of a 
constriction. In  that problem separation took place in a fairly large region, of non- 
dimensionalized streamwise extent O( l), and the small parameter appearing in the 
asymptotic expansion, Re+, was fortunately small. 

We examine the dependence of various flow quantities near separation on the 
Reynolds number. It is found that the skin friction and the pressure gradient scale 
almost exactly as predicted by triple-deck theory. This is the best agreement yet 
obtained (for example, it  is not evident in the bluff-body separation results of 
Fornberg 1985). In addition, the flow profiles are qualitatively similar to the lower- 
deck solution. Encouraged by this, we next attempt to make a detailed comparison 
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by determining the two constants in the theory which are supplied by the global 
inviscid flow. Apparent quantitative discrepancies can be resolved by considering 
higher-order terms in the asymptotic expansion. 

In  the corner flows described in $3, secondary boundary-layer separation at the 
wall means that the global inviscid limit cannot be one of the one-eddy flows 
computed by Moore et al. (1988). To sidestep this difficulty, in $5 we change the 
boundary condition a t  the wall to prevent secondary separation. With u(x,O) = 
up > 0, the reverse boundary layer is accelerated instead of retarded by the wall, and 
remains attached. This also strengthens the main eddy considerably, causing the 
emergence of inviscid behaviour in the corner at a lower Reynolds number, and 
pushes the primary separation point upstream to just ahead of the plate. The eddy 
now looks almost identical to those of Moore et al. and we make encouraging 
comparisons of the eddy shapes and the vortex sheet strengths with Prandtl- 
Batchelor flows. By changing the wall boundary condition, flows with different 
levels of the constant interior vorticity can be found. We conclude that a simple 
Prandtl-Batchelor flow is the infinite-Reynolds-number limit in this case. 

2. Flow geometry and numerical solution 
The flow geometry is sketched in figure 1 (a) ,  and the quadrant in which we solve 

the equations in figure 1 (b). The flow is completely specified by the plate, the lines 
of symmetry on the axes, and the uniform strain in the far field. In the absence of 
the plate, $ = -xy is an exact solution of the Navier-Stokes equations with velocity 
u = -x, v = 0 on the x-axis. 

We use the stream function-vorticity representation of the flow, in which the 
velocities are related to the stream function $ by u = $cry, v = - $$ and the vorticity 
w is defined by w = v,-uy. Non-dimensionalizing lengths by the position of the 
leading edge, 1, and velocities by the undisturbed velocity at  the leading edge, 1,  the 
Navier-Stokes equations for incompressible, steady flow are 

VZ$ = - w ,  ( 2 . 1 ~ )  

v 2 w  = Re($yW,-$zwy), (2.1 b )  

where the Reynolds number Re = 1 / v  and v is the kinematic viscosity. Following 
Leal (1973), we transform to elliptical cylindrical coordinates with x = cosh Ecosq, 
y = sinhtsinq, in which (2.1) can be written 

( 2 . 2 ~ )  

(2 .2b )  

where J(E,7) = +(cash 25- cos 27) is the Jacobian of the transformation and now 
V2 = a,+ a,,,,. The quarter-plane x 2 0, y 2 0 maps to the semi-infinite strip E 2 0,O < 
7 < in, with the plate at 0 < x < 1, y = 0 mapping to the 7-axis (5 = 0,O < 7 < in). 

The x- and y-axes are streamlines so we have $ = 0 there. The symmetry condition 
is easily written as w = 0. The no-slip condition at the plate, $cry = 0, transforms to 
$6 = 0. 

The boundary conditions in the computational coordinates are 

+-xy = -+sinh2(sin27, o+O as t+ 00, ( 2 . 3 ~ )  

$&O, 7) = $.CO,q) = 0 for 0 < 7 < in, (2.36) 

(2 .3~)  $(5,0) = $(& in) = w(5 ,  0) = w(6,  in) = 0 for 6 > 0. 
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\ I /  
FIGURE 1. Corner flow geometry: (a)  entire plane; ( b )  local geometry. 

Let the grid spacing be h in the [-direction, and k in the q-direction. Because of the 
coordinate mapping, the grid spacing on the plate near the leading edge is Ax - i k2 .  
This concentrates grid points in the region we are interested in, and also reduces the 
spatial extent of errors caused by the leading-edge singularity. The actual singular 
point, [ = q = 0, is never used in the relaxations. 

The no-slip boundary condition @ - 0 was transformed using the expansion of 
Woods (1954), in which the surface vorticity is written as a function of the adjacent 
stream function and vorticity. The Taylor expansions of @ and w with respect to [ 
are written out at [ = 0, and the first three derivatives of 1cr eliminated using the 
boundary conditions and (2.2a). This gives 

6 -. 

n 

where wj = w( jh ,  7). In some problems, a drawback of this method is that it destroys 
the expansion of the truncation error in powers of h2 (useful in Richardson 
extrapolation) which can be obtained using an O(h) approximation for the surface 
vorticity. However, in solving model problems, (2.4) was found to be much more 
accurate than other expansions at the values of h used in practice. In any event, the 
defect correction process will introduce new errors of order h2 and every higher order. 

In the far field away from x = 0, the vorticity decays exponentially and we can set 
w = 0 at [ = 6,. The stream function does not decay exponentially to its free stream 
value; however, we are fortunate that in this problem it is still sufficient to set 
$ = -a sinh Z[ sin 27 at [ = 6,. The exponential grid stretching at large [ makes it 
easy to check the effect of the finite domain; this is shown below to be negligible. 
Asymptotic boundary conditions are not required. 

Close to the y-axis a wake persists, and the vorticity is not exponentially small. It 
has a similarity form in y % 1 : 

w = ay-2g(Reix), g(w) = we-wa/2, (2.5) 

where a is a constant. The wake has constant width as y --f rn : the outward diffusion 
ofvorticity is just balanced by the inward compression of the flow. In the wake we 
impose the decay w K Y - ~ .  

The equations (2.2), together with boundary conditions (2.3) and (2.4), are now in 
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Re 

150 
400 

1000 
2000 
3000 
4000 
5000 

N 

160 
160 
160 
320 
320 
320 
320 

Vorticity at centre 

Coarse Fine Richardson 

0.670 0.667 0.666 
1.313 1.293 1.285 
1.616 1.583 1.572 
1.818 1.777 1.762 
1.979 1.912 1.889 
2.105 2.014 1.984 
2.200 2.105 2.074 

- 
Coarse 

0.006 
0.013 
0.058 
0.048 
0.091 
0.148 
0.193 

Flux error 

Fine Richardson 

0.004 
0.004 
0.012 0.007 
0.008 0.007 
0.019 0.007 
0.034 0.006 
0.045 0.007 

Relative errors in final Re = 5000 solution 

Quantity Re-dependence Relative error 

1 - Xaep Re0.5 5 x 10-4 
"c Re'.3 1.5 x 10-3 
7,(xSep 1 Re'.o 1.3 x 10-3 
PZ(%,P) Re'." 3 x 10-3 
max P z  Re'." 3 x 10-2 

TABLE 1 .  Accuracy of solutions. Here the 'fine grid' has Npoints on the plate, and the 'coarse grid' 
18. The vorticity is evaluated at the centre of the Richardson-extrapolated eddy. The flux error is 
defined in the text. 

the general form (1 .1)  and are to be solved in a rectangular domain. Uniform grids 
and central differences are used throughout. We generally used the standard full 
multigrid algorithm with W-cycles. 

The coarsest grid was always 6 x 5 ,  i.e. N = 5 points on the plate. Two collective 
Gauss-Seidel-Newton relaxations were used per iteration, with both unknowns 
being updated simultaneously at a point. The grid points were scanned in red-black 
order. The finest grid used was 384 x 320. The asymptotic convergence rate was 
about 0.33 ; ten iterations of 'full multigrid ' solved the (nonlinear) equations 
accurately enough to perform Richardson extrapolation, starting from a guess of 0 
on the coarsest grid. 

The convergence rate was independent of the size of the finest grid or the Reynolds 
number, up to a point. Eventually we began to experience convergence problems 
with full multigrid. This was related to the existence of spurious solutions to the 
discrete equations close to the 'real' solution. In these solutions the secondary eddy 
was either larger and much stronger than expected, or i t  collapsed. After checking 
convergence to these solutions carefully, it was eventually realized that their 
vorticity wiggles on the plate and their large errors in the flux test (described below) 
indicated that they were spurious. These solutions were avoided by using trivial 
continuation in the Reynolds number, starting multigrid on the finest level with a 
solution obtained at  a lower Reynolds number. Large steps in Reynolds number (e.g. 
1000) could be used. 

At Re = 5000, N = 320, the algorithm converges at the same rate initially but 
slows to about half as fast in the asymptotic stage. This degraded asymptotic 
convergence rapidly gets worse, and a t  Re = 6000 the method no longer converges. 
We have considered and eliminated several possible problems ; however, defect- 
corrected PAS multigrid is still not fully understood, and is the subject of ongoing 
investigation. Achi Brandt's view (1990, personal communication) is that at large 
Reynolds numbers, distinct phenomena may cause different problems in different 
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parts of the flow field, so that to achieve increased performance it will be necessary 
for the program to recognize the local nature of the flow (e.g. inviscid, a shear layer, 
or fully viscous) and to take action accordingly. 

The errors due to the finite domain are extremely small. At  Re = 1000, N =  160, 
moving the outer boundary from 6, = 1.767 (y, = 2.84) to 6, = 2.356 ( y ,  = 5.23) 
changed the reconnection point yrec by only - 2 YO of the discretization error. 
Accordingly, all runs used 6, = 1.767 for Re > 1OOO. 

Originally, we examined the dependence of the solutions on h by repeatedly 
doubling N and checking that they were in fact second-order accurate. This 
confirmed that the errors were O(h2) throughout the flow field. In most cases the 
errors increased faster than the Reynolds number - this is shown in table 1.  Since 
Vw = O(Re) in the boundary layers, and the vorticity transport equation has terms 
proportional to ReVw, we might expect discretization errors of order O(Re2); 
fortunately, it appears that these thin layers do not excessively pollute the rest of the 
solution. However, instead of presenting these results, we concentrate here on a test 
that checks a known property of incompressible steady flows against the numerical 
solutions. 

The Kirchhoff circulation theorem for steady flow (Batchelor 1967) states that 

Vxwds=O ( = ~ [ ~ , V x w d s ’ ) ,  v.l-c 
where the integral is taken around any closed streamline ; that is, the total flux of 
vorticity through any material surface is zero. This conservation law is clearly not 
built into our numerical solution, so we can use (2.6) to see how well we have satisfied 
the Navier-Stokes equations globally. We take C to be the contour surrounding the 
main eddy : 

c = u {(x, 0) : 0 < x < xsep, 

(0, Y )  Yrec 2 Y 2 0)- 

(x, y )  : $(x, y )  = 0 separating streamline, 

(2.7) 

C‘ is the same contour in the computational coordinates. This includes the entire 
shear layer, which is where the greatest errors are expected. The entire contour is 
contained in boundary layers of thickness O(Re-i) (except at  its corners), so we expect 
the local flux of vorticity to be O(Re) - hence the normalizing v in (2.6). 

The integral (2.6) is evaluated to second-order accuracy. The position of $ = 0 and 
’the flux there are found using linear interpolation from adjacent points. The 
discretization error incurred in computing the integral is much smaller than that in 
the integrand. Here the flux of vorticity is directed into the eddy on the separating 
streamline, and out of the eddy on x = 0 and y = 0. We estimate the relative error 
as the total flux divided by the absolute flux in or out of the eddy. It would be useful 
to compare our errors with those in other numerical NavierStokes solutions, but 
tests such as (2.6) are not frequently applied. Fornberg (1985), in his study of flow 
past a cylinder, calculated the pressure by integrating along coordinate lines, and 
found that the error could be up to 9% (at Re = 600) if the path of integration 
coincided with part of the shear layer ; but his domain was much larger than ours. 
Carpenter & Homsy (1990) studied a thermally driven flow in a square cavity, also 
using Newton’s method. They found discrepancies in integral properties of the flow 
of 3 Yo a t  a local Reynolds number of Re I),,, - 300 with h = &. 
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(a) Main eddy 

Re 

150 
Leal 
400 
Leal 

1000 
2000 
3000 
4000 
5000 

x*ep 

0.5696 
0.58 
0.6968 
0.70 
0.7814 
0.8278 
0.8497 
0.8633 
0.8729 

Yrec 

0.3902 
0.39 
0.5321 
0.515 
0.6191 
0.6678 
0.6908 
0.7069 
0.7165 

YreclX,,p 

0.685 
0.68 
0.764 
0.735 
0.792 
0.807 
0.813 
0.819 
0.821 

2, 

0.1695 

0.1524 

0.1524 
0.1657 
0.1705 
0.1755 
0.1755 

- 

- 

Y C  

0.2010 

0.2766 

0.2766 
0.2337 
0.2289 
0.2287 
0.2287 

- 

- 

*C 

0.0031 
0.003 
0.0083 
0.0072 
0.0140 
0.0182 
0.0205 
0.0221 
0.0234 

"c 

0.667 

1.285 

1.572 
1.762 
1 .889 
1.984 
2.074 

- 

- 

x c / x * ,  YCIY* 
(0.53,0.62) 
(0.52,0.63) 
(0.47, 0.62) 
(0.52,0.63) 
(0.41, 0.55) 
(0.39, 0.48) 
(0.38, 0.45) 
(0.40, 0.46) 
(0.39, 0.45) 

( b )  Secondary eddy 

Re %ep Xrec XC Y c  lo4*, WC 

- - 0 0 2250 -0.38 - 
3000 0.3307 0.4556 0.4055 0.0295 -0.47 -0.347 
4000 0.3052 0.4894 0.4239 0.0542 -2.96 -0.760 
5000 0.2896 0.5126 0.4371 0.0497 -4.34 -0.733 

TABLE 2. Primary eddy characteristics. All data taken from Richardson-extrapolated solutions. $c 

and w, are values at the centre of the eddy. See figure 1 ( b )  for more information. Some data from 
Leal (1973) are included for comparison. 

Table 1 gives the flux errors for various mesh sizes and Reynolds numbers. 
Although (2.6) might accidentally be very small in a particular case, the consistent 
results indicate that this is not happening, and the relative error is O(h2).  Having 
found these solutions, we bicubically interpolate the coarse-grid solution to  the finest 
grid (introducing small O(h4) errors) and eliminate the leading-order error using 
Richardson extrapolation, leaving an error of O(h3).  (It is essential to know the 
solution on the finest grid so that the vorticity fluxes can be accurately computed.) 
The recomputed flux errors are about 0.7 %. Also note that the integrand is the third 
derivative of the stream function, evaluated in a thin boundary layer, and is 
expected to have much larger errors than those in ~ and w .  

Finally, we have estimated the relative error in our final solution a t  Re = 5000, as 
follows. First the dependence of the errors on Reynolds number was estimated for 
each quantity. Then the coefficient of h3 in the Richardson-extrapolated solutions 
was found at Re = 400 (from N = 40, N = 80, and N = 160 calculations), and this 
result extrapolated to Re = 5000 using the observed power-law dependence. The 
relative errors are given in table 1 and are mostly a few tenths of a percent. The error 
is larger in max (p,) because the maximum occurs near the leading-edge singularity, 
where the finite differences break down. 

3. Separated corner flow 
Leal (1973) studied this flow and used Re = 2/v, so his nominal Reynolds number 

is twice ours. His Reynolds numbers have been rewritten here using Re = 1 / v  in an 
attempt to avoid confusion. He found that after the boundary layer has separated, 
the eddy shape rapidly assumes a fairly constant form as the Reynolds number 
increases. The large amount of positive vorticity generated at the leading edge is 
convected increasingly efficiently downstream, forming a shear layer. By comparing 
the shape of the eddy to  sample viscous and inviscid eddies, he noted that all the 
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FIGURE 2. For caption see p. 11. 

eddies were largely viscous and that there was no hint of any transition. In fact, as 
we shall see, the inviscid transition was just about to take place, and already a t  
Re = 400 there is evidence that vorticity is starting to be convected around the eddy. 

Table 2 gives global properties of the flows for 150 <Re < 5000. Contour plots of 
the stream function and vorticity are shown in figure 2. For very small Reynolds 
numbers there is no reverse flow. At Re = 25 the flow separates from the plate, first 
at  x = 0 but rapidly separating farther upstream as the Reynolds number increases. 
For 100 <Re < 1000, the main global changes are the upstream motion of the 
separation point, the increasing aspect ratio due to increasingly efficient convection 
of the shear layer, and a rapid strengthening of the eddy. A t  the origin, a nearly 
uniform downward jet impinges on the plate; locally there is Heimenz flow. Because 
of the symmetry condition at  x = 0, there is no possibility of a sequence of corner 
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1 

Y 

0 X 1 X 1 

FIGURE 2. For caption see facing page. 

eddies (either because of boundary-layer separation, as in the driven cavity, or 
viscous Moffatt vortices, which are subdominant to Heimenz flow in this geometry). 

A t  finite Reynolds number the flow separates at a finite angle to the plate. Near 
separation there is a Stokes flow given by 

I+ = y2(ycos0-xsin8), (3.1) 

where the separation takes place at  the origin. Therefore the initial slope of the o = 0 
contour is one-third of the slope of the separating streamline @ = 0, which can be 
seen in figure 2 ; that slope is 
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1 
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11 
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FIGURE 2. Streamline (left) and vorticity (right) contours. The interior contour levels are 
$ = - 0.001 (0.001)0.004, then 8$ = 0.004; and 80  = 2. The wiggles near the leading edge are caused 
by linear interpolation in the plotting routine. The vorticity contours, on the right, also include the 
separating streamline as a dashed line. 

Consideration of inertial forces shows that (3.1) is valid for x < Re-;. 
The quantities x,,x* and yJy* give the relative position of the eddy centre and 

characterize the structure of the eddy (see figure 1 b ) .  Table 2 (a)  shows that the eddy 
centre moves first left and then down as the Reynolds number increases, and remains 
fixed for Re 2 3000. Looking a t  figure 3, this corresponds to the emergence of a region 
of almost constant vorticity. Clearly, as Re increases from 400 to 2000 the structure 
of the eddy changes from viscous to inviscid. 

With hindsight, it is easy to see why a Reynolds number of 400 is insufficient to 
see inviscid flow : the flat plate ‘brakes ’ the eddy, which has typical velocities ti - 
@ J y ,  - 0.03 or a local Reynolds number of about Re $, = 3.  A t  Re = 2000, ti - 0.08 
and the local Reynolds number is about 36, which is much more likely to show 
inviscid dynamics. 

Batchelor (1956) has shown that in a region of flow in which the streamlines (i) 
remain closed as Re + co and (ii) do not pass through a singular region, the vorticity 
will tend to a constant. (In brief, a t  Re = 00, vorticity is clearly constant along a 
closed streamline ; the vorticity transport equation then reads wlt = 0, so w must be 
linear in @; and because the net flux of vorticity across the streamline must always 
be zero, the flux is actually zero everywhere, and w is constant.) As we have observed 
the rapid development of a region of constant vorticity, and as there is absolutely no 
sign of either of the two caveats mentioned above, we believe that the infinite- 
Reynolds-number limit of this flow does indeed follow the Prandtl-Batchelor model 
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FIQURE 3. Perspective view of vorticity. Here w has been truncated to lie in the range 
-5 < w < 10. 

of constant-vorticity regions separated by vortex sheets. We return to this point 
later. 

As seen in figure 3, the development of the plateau is fairly rapid. The next stage, 
in which all the viscous layers reach an asymptotic state, will be considerably slower, 
especially near 2 = 0. It is interesting that the level of vorticity in the plateau is still 
increasing slowly but almost linearly at  Re = 5000. This is because the local Reynolds 
number in some parts of the boundary layers is much less than 5000. But, it does 
raise the question as to whether the level at  Re = co is substantially higher. 
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FIGURE 4 (a, b ) .  For caption see next page. 
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As Re increases, the local Reynolds number near the wall downstream increases 
rapidly, and a reverse boundary layer forms there. At Re = 2255 the reverse 
boundary layer separates, first at  x = 0.38, and a secondary eddy forms. It must 
eventually separate for x slightly greater than x, (where (x,, y,) is the centre of the 
eddy) because the velocity driving the reverse boundary layer begins to decrease to 
zero at about that point. 

Characteristics of the secondary eddy are shown in table 2(b) .  It grows fairly 
rapidly and its large-Re behaviour can be guessed from the results in 3000 <Re < 
5000. Some fluid must always return from the main part of the eddy to the cusp, to 
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FIGURE 4. Behaviour at the boundaries. Results are given for Re = 150,400, 1000,2000,3000,4000 
and 5000. ( a )  Wall vorticity. Separation takes place at the point where w = 0, which moves to the 
right (towards the leading edge) as Re increases. ( b )  Wall pressure gradient. Computed as wy(x, 
O)/Re using third-order finite differences. Max p ,  increases with Reynolds number. The wiggles a t  
Re = 5000 are introduced by extrapolation using the N = 160 solution, which does not completely 
converge; the N = 320 solution is smooth. The sign has been changed so that a positive value 
represents an adverse pressure gradient near the leading edge. The separation point is marked x . 
(c) Vertical velocity at x = 0. Velocity decreases with increasing Reynolds number. ( d )  Flux of 
vorticity at  x = 0. The reconnection point, which increases with increasing Reynolds number, is 
marked x . Arrows indicate the direction of increasing Reynolds number. 
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supply the mass entrained by the shear layer. It appears, though, that as the 
secondary eddy grows, this return takes place in an O(Re&) shear layer next to the 
main, outgoing one. Interestingly, all the calculations show a third, weak centre in 
this layer ; possibly it disappears as Re --f 00 . Velocities are very small, about 0.03, in 
the region between separation and the secondary reconnection, but it seems 
inevitable that a tertiary eddy will form there eventually. (A flattening of w in this 
region is already evident at Re = 5000; see figure 4a.)  The inviscid limit would thus 
consist of an infinite sequence of eddies behind the separation point, each one 
containing still finer structure. The rapidly decreasing velocities mean that the 
number of eddies will grow very slowly with the Reynolds number, probably 
logarithmically. 

The separation of the boundary layer will be discussed in detail in $4. With 
increasing Reynolds number, the reconnection point continues to increase, but the 
aspect ratio of the eddies levels off sharply once inviscid behaviour has set in. Figure 
4 (a)  shows the vorticity a t  the wall (proportional to shear stress) divided by Re;, the 
expected asymptotic growth for a simple boundary layer. Although the scaled value 
is roughly O( l ) ,  the boundary layer is still developing at  Re = 5000. Note that the 
incipient secondary separation is already hinted at  Re = 400: w has a local 
maximum. The pressure gradient in the boundary layer (equal to the flux of vorticity 
at the wall divided by Re) is shown in figure 4 ( b ) .  There is a Carrier-Lin (1948) 
singularity at  the leading edge, followed by an adverse pressure gradient that 
increases slowly with Reynolds number, falling to near zero behind separation. 
Figure 4(c) shows the vertical velocity (v = 0 corresponding to reconnection), and 
4(d)  the scaled vorticity flux (or p, )  at x = 0. They are still changing at Re = 5000 
because the shear layer has diffused considerably by the time it reaches the y-axis. 

We note that figures 4(c) and 4(d) are strongly supportive of a triple-deck-like 
interaction as the smallest scale phenomenon at  reconnection, as suggested by 
Daniels (1979). The vertical velocity gradient vy at separation is proportional to 
Re0.31, and the scaled vorticity flux to Re0*O6, both exponents being close to their 
triple-deck values off and i, respectively. However, yrec increases only slowly : if we 
assume that the inviscid flow reconnects at  y = 1, then 1 -ysep K Re-0.'76. This is 
believed to be due to a relatively large-scale inviscid interaction caused by the shear 
layer, which rapidly broadens as it nears reconnection. A fully self-consistent 
description of reconnection has not yet been found. Some discussion of reconnection 
in free-streamline flows can be found in Cheng & Smith (1982), Cheng (1984), and 
Cheng & Lee (1985), and an overview in F. T. Smith (1986). The numerical results 
clearly suggest that it is possible for the shear layer to reattach in an orderly fashion. 

J. H. B. Smith (1986) reviews the possibility of a Prandtl-Batchelor limit of a 
viscous flow. He points out that in many geometries (such as most external and 
grooved-channel flows) there are serious objections to this model. Our flow was 
designed to be extremely likely to have an O(1) eddy as Re +- 00 and therefore be a 
candidate for an external flow with a Prandtl-Batchelor limit. 

A family of rotational corner flows was found by Moore et al. (1988, hereinafter 
referred to as MST), which had internal vorticity 0 < w < 6.11+. (One member of this 
family was first found by Chernyshenko 1984.) The corresponding flow separating at 
x = L,  say, would have vorticity w and would reconnect at y = L,  since only 
symmetric eddies were found to exist. If such a flow is to be the limit of viscous flow 
as Re --f 00, the viscous flow would presumably have a core of constant vorticity, with 
thin O(Re-i) boundary layers near the walls to satisfy the extra boundary condition 
not present in inviscid flow, and with the vortex sheet being replaced by a shear layer 
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FIQURE 5. Separating streamlines in a corner eddy. The inner solid line is the $ = 0 streamline at 
Re = 1O00, and the outer line is $ = 0 at Re = 5000. The dashed lines are inviscid vortex-sheet 
positions, as explained in the text. 

with velocity jump y. L and w would then be determined by the wall boundary 
conditions. 

The flow discussed here shows a transition to a largely inviscid eddy that cannot, 
however, be an MST vortex, because of the finite-sized secondary separation. There 
are probably more inviscid solutions, consisting of several regions of constant 
vorticity, each bounded by a vortex sheet. This certainly breaks the symmetry of the 
1-region family. However, there is no reason to suppose that tertiary separation is 
avoided either, which in principle can give rise to an infinite sequence of eddies in the 
cusp, as suggested by Messiter (1975). Since u(x, 0) = o(1 -x), the Reynolds number 
necessary to form each successive eddy would increase. This sequence could 
terminate if the velocity in the cusp decreased with increasing Reynolds number, but 
this is not indicated by the Re = 5000 results. 

Despite these problems, the eddy shapes are rather similar to the MST vortices. 
Figure 5 shows the separating streamline at  Re = 1000 and 5000, compared to the 
MST vortex with constant vorticity 2 separating a t  the same position as the viscous 
flow. At Re = 1000, the flow near separation is different, but a t  Re = 5000 the 
agreement is encouraging, and surprising in view of the secondary separation - 
although the secondary eddy may interfere with the external flow as it continues to 
grow in strength. Certainly the difference is less than the thickness of the shear layer. 

Batchelor (1967, plate 7) includes a photograph of an experiment in which a 
splitter plate is introduced in front of a stagnation point. The main changes from our 
flow are that the free stream has uniform flow, rather than uniform strain, and that 
there is also a wall at x = 0, apparently extending to y = 0.55. The Reynolds number 
is not given. The similarity with our flows is striking. The experimental flow appears 
to separate at x = 0.81, and the eddy centre in the top eddy is a t  x, = 0.23, yc = 0.13 
- less than our value because of the different oncoming flow. Secondary separation 
occurs at x = 0.33. These values suggest that the Reynolds number is between 1000 
and 2000. However, there are two strong secondary eddies in y > 0 and several 
weaker ones, in contrast to our results. Because there is not exact symmetry between 
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the two halves of the flow, we believe that these eddies are due to unsteadiness. There 
may well exist time-periodic flows there in which a sequence of secondary eddies 
appears a t  much smaller Reynolds numbers than in our steady flows. 

This idea is supported by the calculations of PQpin (1990) of the flow past an 
impulsively started cylinder. There, secondary separation has already occurred a t  
Re = 550. At Re = 3000 two more separations (regions of locally reversed flow) appear 
when the cylinder has been displaced by 2.75 radii, but these disappear as time 
increases. Unsteady flows thus appear to be much more susceptible to separation than 
steady ones. 

4. Laminar separation from a leading edge 
The importance of steady laminar massive separation, in which the disturbance to 

the external flow changes from thickness O(Re-5) upstream to O(1) downstream, was 
first realized by Prandtl (1905). The triple-deck description of this process was 
developed by Sychev in 1972 for separation from a bluff body, and in 1979 for 
separation from the leading edge of a flat plate. The latter paper contains an error 
in the final scaling of the lower-deck equations, which results in an incorrect 
prediction of which properties of separation are fixed locally and which are supplied 
by the external flow. We give the correct result below. 

We do not reproduce the complete matched asymptotic expansion here; for 
details, see the Sychev papers, the review by Stewartson (1974), or McLachlan 
(1990a). J. H. B. Smith (1982, 1986) has reviewed this problem and many more 
modern applications of high-Reynolds-number theory. 

The basic problem in incompressible, large-Reynolds-number flows is that the 
limiting inviscid solution is not known. Usually there are many solutions that fit the 
boundary conditions. Which one is selected in the limit Re -+ co remains (except in a 
few simple cases) an open question. However, the most promising candidate in our 
case is a Prandtl-Batchelor flow. Although the one-eddy model is not correct for the 
stationary plate, the global shape does seem to be roughly correct. 

Two aspects of the inviscid solution are used in deriving the asymptotic theory. 
One is the local form of the separating streamline. This will not be affected by 
changes in the downstream eddy, such as asymmetry or more complicated structure 
(although certain coefficients could change). The other is the flow in the cusp just 
behind separation, which supplies a boundary condition for the triple deck. This is 
discussed below. 

In a Prandtl-Batchelor flow separating at  x = xsep, the pressure gradient in the 
inviscid solution just ahead of that point is given by 

p ,  - c(xSep - x)+ as x + xiep. (4.1) 

The constant c cannot be negative or zero, because some adverse pressure gradient 
is required for separation to take place; but c > 0 and an unbounded gradient 
appears to imply separation upstream of xsep, a contradiction. In the case of bluff- 
body separation, the resolution is that c is positive but tends to zero as Re +. 00 - it 
turns out to be O(Re-h). However, in leading-edge separation (Sychev 1979), there is 
no contradiction because the separation point can move up to the leading edge as 
Re + co ; c is then a positive constant determined by the global geometry. 

Thus, in contrast to the bluff-body case, where c is given by triple-deck theory and 
the dependence of xsep on c by inviscid theory (e.g. as in Brodetsky 1923), here xSep 
is determined once c is supplied. 
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V 

FIGURE 6. Flow structure near separation. I. Lower deck - viscous boundary-layer equations hold. 
11. Middle deck - inviscid, vorticity present. 111. Upper deck - inviscid, linearized Euler equations 
hold. IV. Blasipls boundary layer. V. External inviscid flow. VI. Fully viscous - Navier-Stokes 
equations hold. 

The local flow situation is sketched in figure 6, along with the various regions of 
the flow in which distinct approximations to the Navier-Stokes equations are valid. 
The small, fully viscous region at the leading edge has a purely local effect and will 
not be considered further here. The leading edge is situated a t  x = 0. Conventionally, 
the speed of the external flow is taken to be positive, so that the x-coordinate of 52 
must be reversed. 

Let v be the kinematic viscosity, and suppose that lengths have been non- 
dimensionalized by a characteristic length I, velocities by a characteristic 
undisturbed speed Urn, and pressure pV,. Then the relevant Reynolds number is 
Re = Urn I l v ,  and our results will be expressed in terms of the same quantities that are 
computed numerically. 

The leading-order outer solution is taken as a Prandtl-Batchelor flow separating 
at xSep. However, we assume that the change in its behaviour from the equivalent 
flow separating a t  the leading edge is a higher-order correction, and use the 
properties of the latter. 

Let U, be the velocity of the external flow a t  the leading edge. It is initially 
unknown, since the upstream flow is affected by the (also unknown) eddy shape. It 
will probably be less than the undisturbed velocity U,. For example, Uo = $ for the 
irrotational corner eddy. The inviscid pressure gradient and separating streamline 
are given by 

Define 

Other authors have used a Reynolds number based on the local free-stream speed U,. 
However, U, is not known a priori, and i t  seems desirable we should a t  least know 
the small parameter. 

The scalings of variables in the lower deck (region I in figure 6) are 

(4.4) 

u = EU = Eqp-IU,  
= E 3 V  = €3qP-tV, 

p = $pI = &p+p-$p, 

x-xsep = e4X' = e4u-t ?I. 
y = E S U '  = &,l;%puty, 

0 

O P  

where p = (0112~). Here primed coordinates can be calculated directly from the 
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FIGURE 7. Flow properties near separation. (a) Skin friction at the wall in scaled coordinates ; here 
Re = 150, 400, 1000, 2000, 3000, 4000, and 5000, and arrows indicate the direction of increasing 
Reynolds number. ( b )  Pressure gradient at the wall. 

results of $3, and unprimed coordinates satisfy exactly the same lower-deck 
equations as those solved by Smith (1977) : 

(4.5) 

ux+vy = 0, UUX+VU,+PX = uyy, 
u=v=o at Y = 0, 
u+ Y + A ( X )  
P + -a( -X)- i  asX+-co, 

as Y + co, - co < X < 00, 

These equations have been solved numerically, and it appears that a solution only 
exists for one value of a. Smith (1977) used the Flugge-Lotz approximation to 
continue the boundary-layer integration into the region of reversed flow and found 
that his iterative method only converged for a = 0.44. Korolev (1980) used upwind 
differencing and found a = 0.42. Van Dommelen & Shen (1984), using a Newton 
collocation method to satisfy the Hilbert relation in (4.5), were able to solve the full 
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equations directly for a,  giving a = 0.415. (We use u = 0.42 throughout.) The lower- 
deck problem is thus regarded as solved. 

These three solutions are all qualitatively similar and are summarized in table 3. 
Unfortunately, in some quantities which we would like to evaluate, they disagree 
with one another substantially. 

The asymptotic distance to separation is 

where a, = 0.3321. 
The presence of vorticity in the limiting flow does not appear to alter asymptotic 

structure outlined above. Inviscid considerations were discussed by J. H. B. Smith 
(1982). In  the external flow, the addition of a flow with vorticity is subdominant a t  
separation to the irrotational flow ; in the cusp, although vorticity gives a different 
matching condition, the final result (4.3) for the separating streamline is unaltered. 
The cusp is too small for vorticity to have a local effect. 

Consider an inviscid flow with internal vorticity wo and external vorticity w l .  
When viscosity is present, the change in velocities in the main deck ahead of 
separation is O(w, y) = O(e5), much smaller than the O(e*) perturbations induced by 
the free interaction. Downstream, typical velocities inside the wedge 0 < y < ysep = 
O ( ( x - z , , , ) ~ )  are O(wo ysep). In  the irrotational theory, there is a slow return flow near 
the wall of magnitude O ( B ~ ( X - X ~ , ~ ) - ~ ) .  (This is required to supply the mass for the 
outgoing shear layer; details are in Sychev 1979). Comparing these two quantities, 
it is clear that  the latter becomes dominant well before the interaction region x- 
x,,, = O(e4) is reached. Thus, vorticity in the cusp does not alter the matching 
procedure of the triple deck. 

In  our case, and apparently in all cases of massive steady separation, secondary 
eddies appear downstream. These may alter U, and c slightly, but their main effect 
is on the downstream matching of the triple deck. We believe that there is no local 
change: velocities in the cusp are always extremely small, and because the return 
flow required by the triple deck is accelerating, it will dominate any effect which 
tends to zero in the cusp, There could, however, be a change farther downstream, in 
a region in which these two effects are of the same order. 

Previous comparisons of the incompressible triple deck with experiments or 
calculations have found that, while separation was plausibly a local phenomenon, 
there was no numerical agreement in detail. Smith (1979, 1981) compares the 
behaviour at separation with experiments (up to  Re = 50) and calculations (up to  
Re = 300). The results are consistent with the theory but the crucial dependence of 
scales and quantities on the Reynolds number cannot be determined. (Explanations 
of larger-scale features of the flow are much more successful.) 

For example, in Fornberg’s (1985) calculation of uniform flow past a cylinder up 
to Reynolds number 600 (based on cylinder diameter), the skin friction a t  separation 
behaves roughly like Reo.ss, instead of the bluff-body triple-deck dependence Re:; and 
the pressure gradient at separation actually decreased over the entire range of 
Reynolds numbers considered, roughly like instead of the gradual Re: 
increase expected. (We have estimated these results from graphs in Fornberg 1985.) 
Numerical comparisons are difficult because the limiting flow is unknown. In  a bluff- 
body flow, one might take U, = 1 as in the Kirchhoff-Helmholtz model ; and Smith 
(1979) calculates the extra parameter (the scaled skin friction A )  in this case. 
However, in a Prandtl-Batchelor flow, U,, A, and the limiting separation point are 
determined by the vorticity in the eddies; from a local point of view, we have two 
free parameters. 
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a -T,(O) min T PX(0) max Px 

Korolev 0.42 0.036* -0.078t 0.072* 0.086* 
v.  D. & S. 0.415 0.025* -0.079 0.072t 0.075 

Re = 5000 - 0.045 -0.048 0.075 0.155 

Smith 0.44 0.033* -0.079t 0.073* 0.090* 

(at X = -3) (at X' = -3.75) 

t Value read from graph ; * Slope read from graph. 

TABLE 3. Properties of lower-deck solution. Values from three calculations (Smith 1977 ; Korolev 
1980 and van Dommelen & Shen 1984) are compared. The maximum pressure gradient is attained 
between X = -3 andX = -4, and the minimum skin friction between X = 6 and X = 8. The values 
from Re = 5000 itre given in primed coordinates, i.e. without factors of Uo and p (see (4.4)). 

Quantity X QO Qi 

T -3.82 0.113 0.078 
TX 0 -0.030 0.025 
min T -0.078 0.092 
T 7.65 0.072 0.082 
P X  -7.65 -0.08 > O  
PX -3.82 0.099 -0.039 
P X  0 0.091 -0.107 
P X  3.82 0.049 -0.065 
P X  7.65 0.021 -0.027 

TABLE 4. Extrapolation to E = 0. A linear best fit was made of various quantities against E ,  through 
Re = 2000, 3000, 4000 and 5000. The line is then transformed to standard lower-deck coordinates 
using Uo = 0.734 and ,u = 0.493. Qo is the E = 0 intercept and Q, is the slope. 

We confine our attention to flow quantities evaluated on the plate. Among those 
of interest are the skin friction and pressure gradient : 

Here T = U,  is the lower-deck skin friction. 
The scaled skin friction T' and pressure gradient Pk,  at the wall are shown in figure 

7. Numerical values are given in table 4. (Here the sign ofpx has been changed so that 
a positive value represents an adverse pressure gradient, as in (4.1)). It is immediately 
apparent that the qualitative predictions of triple-deck theory are fully confirmed. 
As the Reynolds number increases, an increasingly large pressure gradient does act 
over a decreasing region of the plate, triggering separation. Furthermore, the flow 
quantities all scale with the Reynolds number in just the way predicted by triple- 
deck theory : note for example the skin friction minimum and the pressure gradient 
maximum. For moderate Re, the latter is affected by the close leading-edge 
singularity, seen to the left; but for Re 2 lo00 it appears to have settled down. 

However, throughout the whole range of Reynolds numbers, there remain four 
major discrepancies. First, px(xSep) is increasing faster than the predicted rate (p, - 
ReQ.34 , compared to the predicted exponent 3 ) ;  secondly, the maximum pressure 
gradient is about twice as large as the value at  separation, instead of 5-20 YO larger ; 
thirdly, it decays much too rapidly beyond separation. Finally, no values of UQ and 
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FIGURE 8(a) .  For caption see facing page. 

p can be picked which give a reasonable fit to the flow profiles. This may be checked 
from table 3; for example, fitting the pressure gradient maximum would require 
X = 0.9X but the skin-friction minimum requires X' = 2.3X. 

Since we have verified the main feature of the free interaction, let us relax our 
standards and assume that triple-deck theory is valid. lJo and p are determined by 
the external flow, which sees only the shape and outer velocity of the shear layer 
centred on the separating streamline $ = 0. These quantities seem to depend only 
weakly on the detailed structure of the eddy. For example, we computed a flow a t  
Re = 1000 with stationary walls a t  both y = 0, - 1 < x < 1 and x = 0, - 1 < y < 1. 
The extra downstream wall braked the eddy ($c was reduced from 0.014 to 0.009) 
and made i t  fully viscous, but all the separation quantities in table 5 changed by only 
1-2 %. Since the shape of the eddies is very similar to that of the MST vortex with 
the same internal vorticity level, it seems reasonable to use that vortex as a model 
of the external flow. Of course, the secondary eddy could have a local effect not 
visible in figure 5, which will change the constants ; however, in the MST vortices, Uo 
and p depend very weakly on wo (at least for wo 5 4). 

We therefore take wo = 2 and (from MST) U, = 0.734, p = 2a/3a = 0.493, and look 
for higher-order behaviour. Consider each (scaled) flow quantity expanded as a power 



A steady separated viscous corner $ow 23 

0.20 I I I I I I I I I I I I 

0.10 t 

. * - - - -  .- I- 
-.. 

... ... .... 
'*. 

..... ._ -. + -. 

O . O I . .  ....... 

* 

0 

A 
' X  

I I I I I I I I I I I I *  

0 0.1 0.2 0.3 0.4 0.5 0.6 

FIGURE 8. Higher-order behaviour near separation. (a) Skin friction. Here E = Re-:, and results are 
given for 150 < Re < 5000. minT is given by 0. tT( -2)  by *, and -4T'.(O) by +. (a) Pressure 
gradient. Px, is given for X' = -4, - 2 , O ,  2, and 4, shown by A, +, *, 0,  and x respectively. The 
straight lines are the linear least-square fits through the four highest Reynolds numbers. At 
E = 0, the extrapolated value is compared to the lower-deck solutions of F. T. Smith and van 
Dommelen & Shen. 

= Re-! 

series in e. There is no reason to believe that the higher-order coefficients are small, 
and their effect may be considerable because e is so large (5000-i = 0.388). In figure 
8 ( a )  we have plotted T(-2) ,  Tx(0), and minT  against e. Remarkably, for Re > 
1000, they all seem to be linear functions of e. The same behaviour is seen in figure 
8 ( b )  for the pressure gradients at five values of X .  Of course, over the range in e in 
which a linear effect is seen, a small quadratic contribution would look like a linear 
one anyway. Nevertheless, to make progress we assume that the effect of second- and 
higher-order terms is small, and linearly extrapolate to E = 0 to determine the 
leading-order (subscript 0) and first-order (subscript 1) terms in each case. 

= -0.078, exactly agreeing with first-order 
triple-deck theory. The minimim occurs at  X - -3.4, orX - -6.5, which also agrees 
exactly. Other results are also good, as shown in figure 8 ( b ) ;  this increases our 
confidence in ignoring second-order terms. In the pressure gradient the numerical 
agreement is less good although the procedure does reduce the errors considerably. 
It turns out that the maximum at X - -3.5 is a higher-order effect, as is the 
observed rapid decrease through separation. P>,( -4), given by triangles in figure 
8 ( b ) ,  has just started to decrease at  the highest Reynolds numbers considered. It 
cannot be reliably extrapolated to E = 0, but clearly its limit is less than - 2). 

A t  x' = -2 and 0 we find Px,o = 0.150 and 0.138, respectively, or P,, = 0.099 and 

We find min To = -0.090, or min 
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Re Xsep -7z(xsep) 

150 0.4304 6.106 
400 0.3032 15.96 

1000 0.2185 41.12 
2000 0.1722 84.44 
3000 0.1503 129.9 
4000 0.1367 175.7 
5000 0.1271 223.0 

Power-law fit [us. predicted exponents] 
Re-0.34 [-1/91 Re1.05 I11 

Re 

150 
400 

1000 
2000 
3000 
4000 
5000 

Power-law fit: 

Pz(Xsep) 

0.1828 
0.2298 
0.2999 
0.3693 
0.4208 
0.4618 
0.4978 

Re0.34 [2/91 

- T ( O )  

0.0407 
0.0399 
0.041 1 
0.0422 
0.0433 
0.0439 
0.0446 

P X W  
0.0600 
0.0607 
0.0646 
0.0682 
0.0710 
0.0731 
0.0750 

min 7 

-0.63 
- 1.07 
-1.92 
-3.00 
-3.91 
-4.81 
- 5.45 

max P z  

0.4651 
0.5745 
0.7005 
0.8628 
0.9459 
0.9951 
1.0261 

Re0.24 [2/91 

TABLE 5. Separation at finite Reynolds number 

min T 

-0.0391 
-0.0384 
-0.0413 
-0.0439 
-0.0458 
-0.0479 
-0.0480 

max P x  

0.1527 
0.1517 
0.1509 
0.1593 
0.1596 
0.1575 
0.1546 

0.091, giving a maximum pressure gradient about 9% larger than the value a t  
separation. These values are larger than the triple-deck values by 15-25 %, although 
this error is much smaller than in our first-order matching. At X' = 2 and 4 the errors 
are much less. 

Second-order matching removes all the qualitative disagreements between the 
calculated flows and triple-deck theory. It also reduces the quantitative differences 
to about 20% or less when plausible values of U, and ,LA are used. This procedure 
could never be used to Jind U, and ,LA (or a, for that  matter). In the MST family of 
vortices, dU,/dw, < 0 and dp/dw, < 0. All the quantities of interest (see (4.4), (4.7) 
and (4.8)) have a positive power of U, and a negative power of p, so any system of 
equations designed to match them would be very ill-conditioned. 

The distances to separation (see table 5 )  behave like xsep - Re-0.34, as compared to 
the predicted exponent of -0. The latter is derived by matching the Blasius 
boundary layer to the upstream limit of the interaction region, and the size of that  
region can be found independently of that final matching. So it  is not implausible 
that the interaction region could develop at a lower Reynolds number than that for 
the final behaviour (4.6). 

If we regard (4.6) as specifying the onset of the interaction region (unfortunately 
only vasuely defined in the theory), we might expect a large component of order 
X = Re-3 in xSep. Our assumed values of U, and p in (4.6) give xsep = 0.0325s. A fit to 
zSep of the form as+ be4 gives a = 0.14 and b = 3.26, but this does not explain all the 
variability in the data. Unfortunately, fitting a full fourth-order polynomial gives 
unrealistic results (with, for example, a < 0). Our results are simply not accurate 
enough to capture this many terms in the expansion of xsep. 

One plausible, accurate least-squares fit was obtained by dropping the quadratic 
term : 

where Jerrorl < 0.0004. This is shown in figure 9. The linear coefficient here is of the 

xSep = 0.0501s+ 1 .2042e3 + 1 .6244~~  +error, (4.9) 
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FIGURE 9. Distance to separation. The distance from the leading edge to the separation point is 
shown for 150 < R e  < 5000. The solid line is a plausible fit based on triple-deck theory, given by 
(4.9). 

6 

right order of magnitude, but it would be extremely hard to obtain a better matching 
from finite-Reynolds-number calculations, or even to prove or disprove (4.9) : the 
exponents are just too small and the sought after effect is at  too high an order. 

A by-product of the linear extrapolations is an estimate of the second-order 
correction at that point. These are given in table 4. is everywhere positive (about 
0.08) and has a fairly sudden increase near X = 0. P,, is initially positive, changes 
sign at X N 5 ,  and has a large maximum near X = 0. These predictions can be tested 
when the lower-deck problem has been solved to second order. 

What is the source of the second-order corrections? Obviously, there are the 
contributions induced by the first-order terms, and terms from the regular 
perturbation expansion of the upstream boundary layer. But several important 
effects only enter at  higher order. One is from the external flow : it separates at xSepr 
but U, and c are evaluated from the flow separating at  the leading edge. The MST 
vortex separating at  L = 1-xSep has separation speed LU, and streamline ysep - 
L-kcxg. A naive application of (4.8) would then give p , o c L ~ ,  so this can be a 
substantial effect. To find it, (4.9) indicates that we would have to continue to fourth 
order. 

The inviscid pressure gradient a t  separation is p ,  = U~,(CX-; + c2 + O(&) ; i.e. it 
proceeds in powers of e2. Although the free interaction induces terms of E - ~ ,  e-' and 
every higher order in the interaction region, clearly the constant term in p ,  will have 
a large influence which is only captured at third order. For example, in the 
irrotational corner eddy, p ,  does not even start increasing until x N 0.05. 
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FIGURE 10. Streamline and vorticity contours for u(z,O) = 0.2 and Re = 1000,2000, and 3000. The 
contour intervals are &$ = 0.005 and So = 2. Note the developing region of constant vorticity, and 
the boundary layer near y = 0. The wiggles near the leading edge are caused by interpolation in the 
plotting routine. 

For these reasons, our linear extrapolations must be viewed with caution pending 
the calculation of the second-order contributions to the lower deck. However, the 
close agreement which they give with the first-order lower-deck solution stands in 
their favour. 

5. Viscous corner eddies and Prandtl-Batchelor flows 
The behaviour of the flat-plate problem suggests that to see the simplest one-eddy 

Prandtl-Batchelor vortex it is necessary to prevent separation of the reverse 
boundary layer. One way to do this would be to apply suction a t  the wall. However, 
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FIGURE 11.  Perspective view of vorticity: (a) u(s,O) = 0.2, Re = lo00 (compare the developed 
plateau here with the u(z, 0) = 0 case in figure 10) ; ( b )  u(z) piecewise linear, up = 1.5, Re = 2000, 
opposite viewpoint (note the large plateau and negligible shear layer). o has been truncated to lie 
in the range -5 < w < 10. 

this would upset the mass balance, creating a more complicated far field. A simpler 
way is to give the plate a positive horizontal velocity : we set u ( x ,  0) = up. 

The first flow computed was with up = 0.2 at Re = 1000, shown in figures 10 and 
11. The moving plate did indeed stop the boundary layer from widening excessively ; 
furthermore, the ‘strength ’ of the eddy (the maximum value of the stream function) 
inoreased from 0.014 in the stationary-plate case to 0.041, because of the velocity 
imparted to the eddy by the plate. The increased local Reynolds number in the eddy 
explains the more nearly inviscid flow : there is already a distinct plateau of vorticity 
with wo - 2.5. When up > 0 the streamline $ = 0 clearly cannot contact the plate. 
One possibility is for a thin layer of reversed flow to remain near the plate for a short 
distance, but this does not turn out to be the case. (It will occur in the singular limit 
up + O .  In particular, for up = O(Re-)), the triple-deck structure at separation persists 
with appropriate boundary conditions. Upstream-moving separation is considered 
by Elliott, Smith & Cowley 1983 and by van Dommelen 1981.) Instead, there is a 
stagnation point a distance O(v)  ahead of the plate and the flow immediately 
separates. The geometry is simpler than in other cases of upstream-moving 
separation, and there is no Moore-Rott-Sears point (a point where u = uy = 0 and 
y + 0). Because the external flow never comes in contact with the plate, it remains 
inviscid, and the dividing streamline behaves like a d .  A graph of yiep is a straight line 
away from the stagnation point, and we find a - 0.590. The distance s from the origin 
to the shear layer along the line y = x can be found approximately if its position is 
taken as the point of maximum vorticity. This gives s = 0.54. These values closely 
correspond to the MST vortex with wo = 2.5, which has a = 0.583, s = 0.537. 

2 FLM 231 
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FIQURE 12. Viscous flow in the cusp. 

Re u ( 4  up $c wo A,  A ,  
1000 - 0 0.0140 1.61 0.203 0.005 
2000 - 0 0.0182 1.75 0.218 0.046 
3000 - 0 0.0205 1.89 0.221 0.145 
4000 - 0 0.0220 1.98 0.221 0.226 
5000 - 0 0.0234 2.07 0.221 0.260 

1000 constant 0.2 0.0408 2.51 0.296 0.068 
2000 constant 0.2 0.0458 2.74 0.302 0.222 
3000 constant 0.2 0.0484 2.87 0.302 0.288 
4000 constant 0.2 0.0498 2.94 0.303 0.317 

2000 0 0.0182 1.75 0.218 0.046 
2000 constant 0.1 0.0313 2.27 0.262 0.141 
2000 constant 0.2 0.0458 2.74 0.302 0.222 
2000 constant 0.3 0.0621 3.21 0.340 0.294 
2000 constant 0.4 0.0776 3.51 0.379 0.346 
2000 constant 0.75 0.1414 4.53 0.506 0.476 

2000 linear 0.25 0.0346 2.44 0.252 0.187 
2000 linear 0.50 0.0550 3.19 0.295 0.324 
2000 linear 1.0 0.1028 4.41 0.376 0.527 
2000 linear 1.5 0.1555 5.26 0.458 0.613 
2000 linear 2.0 0.2125 5.98 0.540 0.430 

TABLE 6. Properties of driven viscous corner eddies. Here the wall condition on u(z) is either 
constant or piecewise linear, wo is the value of vorticity in the plateau, A, is the total area of the 
eddy, and A, is the proportion of the eddy taken by the plateau. The plateau was defined as the 
area enclosed by a streamline such that the standard deviation of the vorticity in its interior was 
less than 0.05; this was found to correspond to an intuitive definition from vorticity plots such aa 
figure 10. 

Increasing the Reynolds number gave similar flows, as shown in figure 10, 
suggesting that secondary separation is definitely averted. wo increased slowly, as 
shown in table 6. It thus appears that one of the family of MST vortices is selected 
as the large-Reynolds-number limit. The finite-Re solutions agree well with the 
corresponding MST vortex, with two exceptions : 

(i) The aspect ratios remain less than 1, probably because of viscous action near 
x = 0. Note that at finite Reynolds numbers, the streamline must reconnect at right 
angles in a stagnation point, not in a cusp. Reconnection is discussed briefly in sand 
is the subject of ongoing research. We believe that it is possible for the cusp-shaped 
shear layer to reattach in an orderly fashion. 

(ii) The constant-vorticity region does not cover the whole eddy. The problem this 
time is not slow flow upstream - in fact, the flow is nearly inviscid in the cusp, as 
shown by the vorticity contours that follow the streamlines everywhere except near 
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Re 1 -zlert Ratio 1-zIigh, Ratio A&-: 
1000 0.609 0.362 
2000 0.553 0.908 0.337 0.931 0.891 
3000 0.531 0.960 0.311 0.923 0.935 

TABLE 7. Turning points of w = 2 contour: ‘ratio’ is the distance at that value of Re divided 
by the distance at the next smallest Re; the distances are predicted to go like Re-r. 

the wall. Instead, disturbances generated in the downstream boundary layer are 
swept away from the wall by the natural motion of the eddy. 

This effect can be estimated as follows. Consider the Batchelor flow with internal 
vorticity w .  The equation for the stream function in the cusp is approximately 
Ic.,, = -w, with @ = 0 at y = 0 and at y = ysep = ax:, so 

II. = + Y ( Y s e p - ~ ) .  (5.1) 

Thus the streamlines turn around (see figure 12) when u = 0, or 

x = (SY, 
measuring distance from the leading edge. Now suppose that viscous effects do not 
greatly alter the flow field. Downstream, in the boundary layer, $ = u9 y+O(y2) and 
y = O(Red) .  So streamlines (or, equivalently, vorticity contours) originating in the 
boundary layer will turn around when x = O(Re-i) ; the constant-vorticity region will 
enter the cusp very slowly. Table 7 shows that u = 0 when x = O(Re-0.135), in close 
agreement with the above description. 

By altering the boundary condition on the plate, different members of the family 
of MST vortices can be found. The first set of solutions was found by setting u = up 
and increasing up at Re = 2000. Solutions could be found up to up = 0.85 and are 
shown in figure 13 (a). The flows behaved roughly like the MST family, with the eddy 
bulging out as wo increased, but because of the large velocity enforced near x = 1 - 
not present in a Prandtl-Batchelor flow - the correspondence of eddy shapes is not 
exact. However, the sheet strength was estimated in two cases and is shown in figure 
14. The numerical values disagree by about lo%, but the broad features are correct, 
including a weak sheet with a boundary layer at the cusp when wo is large. 

To see if fmite-Reynolds-number eddies could be found that corresponded even 
more closely to Prandtl-Batchelor flows, the (somewhat artificial) boundary 
condition was chosen in which u(x,  0) is piecewise linear, and u(0) = u(1) = 0, .(a) = 

up. The lengthscale L of the corresponding Prandtl-Batchelor flow was estimated by 
extrapolating the y - x; behaviour to the x-axis. The dividing streamlines for six up 
values are shown against the position of the vortex sheet in figure 13(b) .  Considering 
that the width of the shear layer in these cases is more than 0.1, the agreement is 
extremely good, and it must be concluded that for this geometry, the limit of small 
viscosity is indeed a Prandtl-Batchelor flow. 

The results for different wall conditions are summarized in table 6. Both the 
internal vorticity and the relative size of the plateau region increase roughly linearly 
with up, the latter confirming that the presence of inviscid dynamics is controlled by 
the local Reynolds number. 

The question arises as to whether all of the MST vortices are possible large- 
Reynolds-number limits of Navier-Stokes solutions with appropriate boundary 

2-2 
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FIQURE 13. Eddy shapes and vortex sheets. Dividing streamlines at Re = 2000 are shown for (a) 
u(x,O) constant, up = 0, 0.1, 0.2, 0.3, 0.4 and 0.75 a t  Re = 2000. The eddy is pushed outward 
because of the h i g F  velocities in the interior. For larger up, the separation point is pushed 
upstream and the d behaviour is lost. (b) u(s,O) piecewise linear, u, = 0.25, 0.5, 1.0, 1.5, and 2, for 
which wo = 2.44, 3.19,4.41,5.26 and 5.98. The vortex sheet of each corresponding MST vortex flow 
with internal vorticity wo is shown for comparison (dashed lines). For up = 0.25 and 0.5, it  is drawn 
with lengthscale L = 0.93 and 0.96, respectively; for the others, the lengthscale was so close to 1 
that we used L = 1 .  
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FIQURE 14. Vortex sheet strengths. Estimates of sheet strengths y are shown for two finite- 
Reynolds-number calculations, u(r, 0) = 0.2 a t  Re = 3000, which had wo = 2.87 (upper symbols), 
and u(r,O) = 0.75 at Re = 2000, wo = 4.53 (lower symbols). The solid lines are the vortex sheet 
strengths of the Prandtl-Batchelor flow with the same internal vorticity, taken from MST. 

conditions. Eddies with small uo would be difficult to realize, since braking the flow 
by adding walls, etc., can cause secondary boundary-layer separation, and the slow 
speed in the eddy would make it difficult to calculate the inviscid limit. Large oo 
values seem quite possible, since wo appears to increase linearly with up. Although it 
could level off, it  seems more likely that either L would increase, giving larger and 
larger eddies, or that flows with wo > 6.12 might correspond to Prandtl-Batchelor 
flows with inward-pointing cusps, which have not been calculated. 

All these calculations used N = 320 and 6, = 1.767. The total errors in wo and @c 

are always less than 0.5 YO. 

5. Conclusions 
Multigrid is a practical and extremely economical alternative to Newton’s method 

or time integration for finding steady-state solutions of the Navier-Stokes equations. 
Although the algorithm is more complicated to implement, the small resources 
required and fast turnaround greatly help development. Despite twenty years of 
multigrid research, it is still not as widely used as it might be. Clearly both more 
research into its behaviour with high-Reynolds-number flows and more successful 
practical applications are needed. 

Our main flow of $2 is an example of an external flow in which viscous and inertial 
forces do not remain balanced as the Reynolds number increases. Instead, an inviscid 
transition occurs fairly rapidly (over the range 400 to ZOOO), and the high-Reynolds- 
number limit of the flow (except near the corners and walls) is clear. The moving-wall 
flows of $4 are a non-trivial example of the transition of a viscous flow to a 
Prandtl-Batchelor limit with a vortex sheet and internal vorticity. 



32 R.  McLachlan 

Although the geometry could be realized experimentally, in practice the flow 
would undergo a bifurcation (at a Reynolds number less than those we have 
considered) in which symmetry about the y-axis is lost. Nevertheless, it is essential 
to consider such ' artificial ' problems to get clear results, valid beyond this particular 
example, about high-Reynolds-number flows. For example, placing a wall at x = 0, 
- 00 < y < m, might be considered a more practical flow. But the extra wall brakes 
the eddy and the inviscid transition is not seen clearly at  accessible Reynolds 
numbers. In addition, nested secondary eddies (as seen in the driven cavity) and 
Moffatt vortices complicate the corner region. 

The specially chosen geometry is largely responsible for our success in confirming 
the Sychev triple-deck model of laminar separation. There remain questions about 
the effects of the complicated downstream flow, but they are most likely to be felt 
outside the relatively small interaction region. 

This work could not have been completed without the help of my thesis advisor, 
H. B. Keller. I would also like to thank P. G. Saffman, for discussions on the physical 
basis of triple-deck theory ; D. W. Moore, for suggesting the corner flow as worthy of 
study, to which I owe any positive results; S. J. Cowley, for suggesting the integral 
test of $2.4; E. F. van de Velde, for providing me with his clearly coded multigrid 
Poisson solver (Velde & Keller 1987) ; and the referees for aiding the presentation. 
This work was supported in part by contracts DOE DE-FG03-89ER25073 and 
ARO DAAL03-89-K-0014, and by a New Zealand University Grants Committee 
Scholarship. 

Addendum 
After this paper was completed, the work of Suh & Liu (1990) appeared. They 

study the flow with walls at  x = 0, - m < y < co and y = 0, 0 < x < 1. They take 
$ + - 2xy, so their Reynolds number Re,, is half our Re. Taking this into account, we 
agree with their asymptotic distance to separation in the case of a stagnant vortex 
(a special case of our (3.6)). But their equation (17) (used in their (18) and figure 10) 
gives the interaction lengthscale as Re-, whereas the correct behaviour is x -xSep - 
Re-:, due to Sychev (1979). We agree with their lower-Reynolds-number results, but 
their discretization errors appear to grow to up to 20% (in, for example, the 
maximum pressure gradient) at  Re,, = 1600. 

We disagree with their conclusion that the flow will tend to that given by the free- 
streamline model. Such a conclusion must be based on insufficient resolution and 
(local) Reynolds numbers too low to see the inviscid transition. We find no evidence 
of decreasing eddy velocities in any similar flow. 
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